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Cycling has become a popular transportation mode for short term trips. Due to the high exposure bicycle trips,
the number of collisions and near miss events has been increasing significantly. This study explores the pattern
of the bicycle‐related collision or near miss events by using a unique crowdsourced dataset collected from
BikeMaps.org. The dataset not only contains near miss events, which are not included in the conventional
state‐maintained crash databases, and it also includes the psychological impact of the event on the cyclist.
The taxicab correspondence analysis (TCA) results reveal patterns for bike‐related collision or near miss events
and associated impact on the cyclists involved. Several factors such as inclement weather, windy condition,
poor lighting conditions, wet ground, loose sand, or dirt pavement are associated with the increasing probabil-
ity of the collision or near‐miss events. The study indicates that collision or near miss events have a greater
impact on cyclists if the events occurred when cyclists already have taken extra caution while cycling.
These cyclists tend to cycle less and be more careful after these events. Interestingly, the results find that fre-
quent cyclists are not psychologically affected by collisions occurred during recreational trips. The finding of
this study could help researchers further understand bike collisions/near miss events and provide better coun-
termeasures to mitigate the frequency of bike collisions.
1. Introduction

Cycling acts not only as one of the essential travel modes in urban
areas but also as a healthy means of transport (Fishman et al., 2015).
Meanwhile, the willingness to cycle is limited by the perception of
safety, which could be impacted by both collisions and near miss
events (Dill and Voros, 2007; Sanders, 2015; Horton et al., 2016). Even
when the cyclist is not injured, near miss events are still incidents that
are usually experienced by cyclists (Aldred and Goodman, 2018).
Aside from collisions or crashes, near miss events are another factor
that could have an impact on people’s perceived risk of bicycling
(Sanders, 2015). Conventional police‐reported crash databases are
usually used in performing safety analysis. Near miss events associated
with bicyclists are rarely examined. There is a need for a comprehen-
sive study to examine both bicycle collisions and near miss events.
Generally, the definition of a near miss event is an incident in which
no direct physical collision happened, but where, given a slight shift
in time or position, collision could have occurred.

To improve the safety of cycling activities, research studies have
been conducted aiming to design and optimize the networks’ land
use and infrastructures. Some countries, such as the Netherlands,
Denmark, and Germany, have improved cycling safety by looking into
comprehensive network‐wide planning, restriction of car ownership,
and strict land‐use policies (Pucher and Buehler, 2008a, 2008b). The
Netherlands promotes cycling safety by giving cyclists the right of
way (Schepers et al., 2014). With separated paths and intersections
for bicycles and motors, the potential for bicycle‐motor crashes is
reduced (Schepers et al., 2017). Denmark and Germany improved
cycling safety by providing enough parking facilities and integrating
cycling with other public transports. Education and training are also
effective methods of improving cycling safety (Pucher and Buehler,
2008b). Aside from European countries in which the trips taken by
bike is a large share, some other countries, such as the UK and the
US, may have a low share among total means of trips, with about
1% (Pucher and Buehler, 2008b). For those countries, instead of plan-
ning and studying to improve the infrastructure from a network view,
an alternative approach is used to study the potential factors that can
be associated with collisions from a local view. After the data analysis,
the issues that can lead to potential risks can be addressed accordingly.

Many factors linked to cycling collisions or near misses are studied
in previous research. The use of alcohol not only acts as the main risk
factor in motor driving but also in cycling. Cycling‐related crashes and
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their results show that severe injuries on the head and face can be asso-
ciated with cycling under the influence of alcohol (Andersson and
Bunketorp, 2002). To protect the head of cyclists, the use of a helmet
is suggested for cyclists in many countries. Although it may reduce the
willingness to cycling, the use of helmets is significant in reducing the
severity of collisions. A cycling‐related injuries report in Canada shows
that the use of a helmet has decreased head injuries caused by collision
while cycling by 50% and 26% for adults (Dennis et al., 2013). Geo-
metric information is also the focus of research for cycling safety.
For example, a naturalistic methodology‐based study collects data
from cameras, GPS, inertial measurement units, and pressure sensors
to study these influences. According to data fusion results, the risks
of collision are high near intersections, especially when the obstacles
appear at the intersection. The pavement, as another factor, is also
shown to relate in the same study (Dozza and Werneke, 2014). When
concerning geometric location, the appearance of other cyclists cannot
be ignored. Although the speed or the position of other cyclists is con-
cerned as a safety issue for young cyclists in their own opinions (Amiri
and Sadeghpour, 2015), another bicycle or pedestrian can contribute
to the collisions (Dozza and Werneke, 2014). Other than geometric
information, the weather and seasons are factors studied by previous
studies. A study finds that the number of collisions or near misses
increases in spring and summer. This is explained by the increasing
interactions of bicycles with cars in these seasons (Fyhri et al.,
2017). The weather is not always considered influential. According
to a study from Canada, most young cyclists can bear cold tempera-
tures while cycling (Amiri and Sadeghpour, 2015). Finally, aside from
naturalistic factors, social factors are also important. For instance, gen-
der is studied via a multi‐group structural equation in a study about
risky behavior among cyclists. Age, knowledge of traffic rules, psycho-
logical distress, and risk perception shows different levels of impact in
keeping positive cycling behaviors for different genders (Useche et al.,
2018). Most of the previous studies reveal the strength of the associa-
tion of different factors with cycling incidents. Some studies also pro-
vide evidence to show the irrelevance. The involvement of a phone is
concerning, and no evidence is found to show the positive relationship
between the frequency of listening to music or the use of a phone can
lead to a crash. This is explained by the compensating when using por-
table devices (Stelling‐Konczak et al., 2017).

Recently, BikeMaps.org was developed (Nelson et al., 2015) as a
crowdsourced information resource. It provides various records of fac-
tors that could link to cycling collisions and near misses, such as the
status of pavement, weather, visibility, and psychological impact on
the cyclists. The information provided by the website serves as a
crowdsourced geographic information that attracts cyclists, especially
young people, to report their incidents (Ferster et al., 2017). Previous
studies using the dataset from BikeMaps.org show that younger people
and females tend to have a high frequency of incidents in the center of
a city (Jestico et al., 2016). It is usually seen that frequency of near
miss events is much higher than the collisions. The peak hour, non‐
intersection locations, and the location of bike facilities are more likely
to be associated with collisions (Branion‐Calles et al., 2017). A bal-
anced random forest is applied to classify 21 explanatory variables
from the crowdsourced reports that can lead to three levels of injuries.
The object the bike collides with is found to be the most impactful fac-
tor (Fischer et al., 2020). Although statistical studies using data from
BikeMaps.org have been conducted before, most of them focus on
one or two aspects and reveal their several relations. Due to the avail-
ability of near miss information and some unique variables, a compre-
hensive study on BikeMaps.org is needed.

This paper reveals character reporting patterns among influential
factors and the potential influences on collisions and near misses using
a correspondence analysis (CA) technique known as taxicab correspon-
dence analysis (TCA) to bridge the gap. CA method determines a low‐
dimensional depiction that optimally illustrates relationships in the
form of a contingency table. The output of the method is in the form
2

of a CA plot that illustrates the optimal representation of variable cat-
egories based on the eigenvalue measures (Benzécri, 1973; Greenacre,
2007). TCA can determine the common factors that influence the vari-
ables, so the analysis of the problem can be clearer. In the recent years,
several transportation safety studies applied TCA and other CA vari-
ants to determine domain specific patterns (Das and Sun, 2015,
2016; Baireddy et al., 2018; Das et al., 2018, 2020a, 2020b, 2021a,
2021b; Ali et al., 2018; Das, 2020; Sivasankaran and
Balasubramanian, 2020; Das and Dutta, 2020; Kong et al., 2021).
The usefulness of this method has been applied in this study by using
data from BikeMaps.org. By using TCA, this study aims to answer two
research questions: 1) What are the key patterns of bicycle collisions
and near crash events? 2) What are key differences between these
two patterns? Findings from this study will help authorities to perform
bicycle‐friendly roadway design and to implement suitable
countermeasures.

2. Data description and methodology

2.1. Data description

This study acquired the bicycle‐related collisions and near miss
event data from BikeMaps.org. (BikeMap, 2020). The data are limited
to Phoenix Area in Arizona. BikeMaps.org allows cyclists or bike crash
spectators to report any bike‐related collisions, including near miss
events. Both crash and near miss event are evaluated by the reporters.
Generally, the definition of a near miss event is an incident in which
no direct physical collision happened, but where, given a slight shift
in time or position, collision could have occurred. The person who
reports the crash is encouraged to provide the crash details such as
crash location, crash time, any other information related to the inci-
dent. The full list of the attribute of the bike‐related crash can be found
in a paper published by Nelson et al. (2015). The dataset contains 226
bike‐related collisions and near miss events from 2013 to 2020 in the
Arizona area. In this dataset, 108 collision events and 118 near miss
events were reported. Fig. 1 shows the locations of the bicycle collision
events and near miss events to provide an overview of the spatial dis-
tribution of these reported events. Majority of the collision data
occurred at downtown areas.

BikeMaps.Org collects a wide range of variables (Nelson et al.,
2015). This study selected 19 variables for the final analysis. Table 1
lists the variables and categories in each variable.

2.2. Summary statistics

Table 2 summarizes the BikeMap.org variables used in the analysis.
The data are separated into two groups based on crash type (collision
and near miss). There are 108 recorded collisions and 118 recorded
near miss events. Most of these events (91.67% for collision and
92.37% for near miss) are related to moving objects. Collisions are
more likely to result in severe crashes; 35.19% of collisions reported
an emergency visit injury. In comparison, 98.31% of near miss crashes
reported no injury. The majority of collisions (40.74%) are involved
with vehicle angle, and the majority of near miss events (37.29%)
are involved with sideswipe crashes. Additionally, 73.15% of colli-
sions and 73.73% of near miss events are reported between Monday
and Thursday. For collisions, the majority (49.07%) of cyclists indicate
that they will become more careful in the future. While, for near miss
events, the majority (37.29%) indicate that the event had no impact on
them. Approximately 31% of the cyclists that reported collisions and
66.95% of the cyclists that reported near miss events are regular
cyclists. Most of the collisions and near miss events were reported dur-
ing the fall, and the fewest portion of crashes were reported during
summer. One possible reason for this is that the summer in Arizona
is too hot for outdoor cycling. Overall, the missing variable rate for col-
lisions is higher than that of near miss events (see Table 2).
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Fig. 1. Locations of collisions and near miss events.

Table 1
Selected Variables.

Variable Name Category Explanation Variable Name Category Explanation

collision MovingObjectVeh Moving Object helmet Y With Helmet
NearCollisionMovingObjectVeh Near Miss Moving Object N Without Helmet
NearCollisionFixedObject Near Miss Fixed Object pvnt Dry Dry
FixedObject Fixed Object Wet Wet
Fall Fall LooseSandDirt Loose Sand Dirt

with VehTurnRight Vehicle Turn Right obs NoObstructions No Obstructions
VehTurnLeft Vehicle Turn Left ViewObstructed View Obstructed
VehPassing Vehicle Passing* Glare Glare
VehHeadOn Vehicle Head On bikelight NL No light
Other Other B Back light
AnotherCyclist Another Cyclist FB Front and Back
VehicleSide Vehicle Side* terrain Flat Flat
VehicleRearEnd Vehicles’ Rear End Uphill Uphill
VehAngle Vehicle Angle Downhill Downhill
Pedestrian Pedestrian turning HeadingStraight Heading Straight
VehOpenDoor Vehicle Open Door TurningRight Turning Right

dow MTWT Mon Tue Wed Thu age 31_50 Between 31 and 50
FSS Fri Sat Sun GT50 Great than 50

impact Witness Witness 19_30 Between 19 and 30
None None gen F Female
TooSoon Too Soon to tell M Male
MoreCarefulandBikeLess More Careful and Bike Less Other Other
MoreCareful More Careful weather Clear Clear
StoppedBiking Stopped Biking Overcast Overcast
BikeLess Bike Less PartlyCloudy Partly Cloudy

injury Unknown Unknown MostlyCloudy Mostly Cloudy
NoInj No Injury Drizzle Drizzle
InjNoTreat Non-threatening Injury LightRain Light Rain
InjFamilyDoctor Injury Family Doctor Needed Light Light
Hospitalized Hospitalized Injury season Spring Spring
EmergencyVisit Emergency Visit Injury Summer Summer

purpose Commute Commute Fall Fall
PersonalBusiness Personal Business Winter Winter
SocialReason Social Reason lighting DawnDusk Dawn Dusk
ExerciseRecreation Exercise Recreation Day Day
DuringWork During Work Night Night

regcy Y Regular Cyclist windspeed B48 Between 4 and 8
N Not Regular Cyclist GT8 Greater than 8

LT4 <4

*Note: “Vehicle Passing” means sideswiping and “Vehicle Side” means colliding directly with vehicle side.
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2.3. Taxicab correspondence analysis

The difference between CA and TCA is that TCA uses a different sin-
gular value decomposition (SVD) based on taxicab norm called taxicab
singular value decomposition (TSVD). TCA is similar to original CA
and the only difference is that the geometry of CA is Euclidean, and
the geometry of TCA is taxicab geometry which is non‐Euclidean.
3

Interested readers can consult Choulakian (2006) for the details of
the mathematical concept.

Consider TSVD is a matrix Y, which is calculated in a stepwise man-

ner. Let v ¼ v1; � � � ; vrð Þ0 u = is an r‐dimensional vector, the taxicab
norm of v is kvk1 ¼ ∑r

i¼1 vij j. Tc is the collection of all vectors of length
c with coordinates +1 or −1. Thus, the total number of unique



Table 2
Frequency and percentages of key variables.

Collision (108) Near miss (118) Collision (108) Near miss (118)

Category Freq % Freq % Category Freq % Freq %

Collision Type Obstruction
Fall 4 3.70 0 0.00 Glare 2 1.85 2 1.69
Fixed Object 5 4.63 9 7.63 No Obstructions 34 31.48 88 74.58
Moving Object 99 91.67 109 92.37 View Obstructed 2 1.85 7 5.93
Missing 0 0.00 0 0.00 Missing 70 64.81 21 17.80
Collision Object Bike Light
Another Cyclist 2 1.85 3 2.54 Back Only 3 2.78 13 11.02
Other 12 11.11 2 1.69 FB 12 11.11 17 14.41
Pedestrian 0 0.00 2 1.69 No Light 24 22.22 64 54.24
Vehicle Angle 44 40.74 14 11.86 Missing 69 63.89 24 20.34
Vehicle Head On 5 4.63 20 16.95 Type of Terrain
Vehicle Rear End 6 5.56 9 7.63 Downhill 4 3.70 4 3.39
Vehicle Side 25 23.15 44 37.29 Flat 37 34.26 88 74.58
Vehicle Passing 2 1.85 10 8.47 Uphill 0 0.00 5 4.24
Vehicle Turn Left 5 4.63 4 3.39 Missing 67 62.04 21 17.80
Vehicle Turn Right 7 6.48 6 5.08 Turning
Vehicle Open Door 0 0.00 4 3.39 Heading Straight 36 33.33 92 77.97
Missing 0 0.00 0 0.00 Turning Right 5 4.63 5 4.24
Day of Week Missing 67 62.04 21 17.80
Monday-Thursday 79 73.15 87 73.73 Cyclist Age
Friday-Sunday 29 26.85 31 26.27 19 to 30 18 16.67 26 22.03
Miss 0 0.00 0 0.00 31 to 50 9 8.33 27 22.88
Impact >50 4 3.70 24 20.34
Bike Less 3 2.78 0 0.00 Missing 77 71.30 41 34.75
More Careful 53 49.07 39 33.05 Cyclist Gender
More Careful and Bike Less 10 9.26 9 7.63 Female 10 9.26 19 16.10
None 10 9.26 44 37.29 Male 22 20.37 61 51.69
Stopped Biking 5 4.63 0 0.00 Other 0 0.00 1 0.85
Too Soon 6 5.56 9 7.63 Missing 76 70.37 37 31.36
Witness 10 9.26 2 1.69 Weather
Missing 11 10.19 15 12.71 Clear 82 75.93 85 72.03
Injury Condition Light Rain 1 0.93 1 0.85
Emergency Visit 38 35.19 1 0.85 Light 0 0.00 1 0.85
Hospitalized 4 3.70 0 0.00 Drizzle 0 0.00 2 1.69
Injury Family Doctor 12 11.11 0 0.00 Mostly Cloudy 3 2.78 7 5.93
Injury No Treat 16 14.81 1 0.85 Overcast 2 1.85 0 0.00
No Injury 29 26.85 116 98.31 Partly Cloudy 20 18.52 22 18.64
Unknown 9 8.33 0 0.00 Missing 0 0.00 0 0.00
Missing 0 0.00 0 0.00 Season
Purpose of the Trip Fall 53 49.07 41 34.75
Commute 34 31.48 65 55.08 Spring 25 23.15 36 30.51
During Work 2 1.85 3 2.54 Summer 14 12.96 6 5.08
Exercise Recreation 9 8.33 28 23.73 Winter 16 14.81 35 29.66
Personal Business 2 1.85 13 11.02 Missing 0 0.00 0 0.00
Social Reason 2 1.85 6 5.08 Lighting Condition
Missing 59 54.63 3 2.54 Dawn Dusk 24 22.22 25 21.19
Regular Cyclist Day 69 63.89 83 70.34
Yes 33 30.56 79 66.95 Night 15 13.89 10 8.47
No 0 0.00 3 2.54 Missing 0 0.00 0 0.00
Missing 75 69.44 36 30.51 Wind Speed
Helmet 4–8 43 39.81 44 37.29
Yes 22 20.37 53 44.92 >8 16 14.81 39 33.05
No 10 9.26 25 21.19 < 4 49 45.37 35 29.66
Missing 75 69.44 40 33.90 Missing 0 0.00 0 0.00
Pavement Type
Dry 38 35.19 93 78.81
Loose Sand Dirt 2 1.85 3 2.54
Wet 1 0.93 2 1.69
Missing 67 62.04 20 16.95
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vectors in Tc is 2c. Tr is similar for column points. To find the first prin-
ciple axis v1 of r row points, v1 should satisfy:

max|{z}
v∈Tc

k Yv1 k ¼ k Yv11 k

where Yv is the projection of r row points on v. And kYvk1 is the taxicab
norm of the projection. λ1 is the first taxicab principal axis dispersion
measure:

λ1 ¼ kYv1k1 ð1Þ
4

f 1 are the first‐row principal factor scores:

f 1 ¼ Yv1 ð2Þ
λ1 can be written as:

λ1 ¼ sgnðf 1 0ÞYv1 ð3Þ

λ1 can be written as equation (4) by putting u1 ¼ sgnðf 1Þ∈Tr :

λ1 ¼ u1 0Yv1 ð4Þ
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where u1 is the first column axis of c column points of dataset Y. And
the first column principle factor scores g1 can be written as:

g1 ¼ Y 0u1 ð5Þ
λ1 can also be written as follow:

λ1 ¼ u1 0f 1 ¼ v1 0g1 ð6Þ
From equation (1)–(5), the calculation of the first principle axis and

the first principle score for both r row points and c column points
(v1; u1; f 1; g1Þ are presented. Then Wedderburn’s rank‐one reduction
formula is applied from here to calculate the second principal axis
and the principle factor score for both row and column points of data-
set Y. Finally, the TSVD of a matrix Y will have the following form:

Y ¼ ∑
k

a¼1

f aga 0

λa
ð8Þ

To implement TCA to a contingency table Y, there is need to apply
TSVD to a correspondence matrix P = Y/n which is similar to the orig-
inal correspondence analysis. P is a correspondence matrix with mar-
ginal proportions pi: and p:j. The process is to apply TSVD to P and
continue the same process as above until the kth iteration.

3. Results

TCA method has been applied to two datasets (collision data, and
near miss event data) to answer the research questions. Note that this
study used a crowdsourced dataset. It is possible that some individuals
reported inaccurate information. However, due to the nature of TCA,
features are clustered together only if they have strong relationship.
Thus, a few inaccurate records can hardly change the over patterns.

3.1. Results of collision data

TCA method transforms tabular numerical data into two‐
dimensional data visualizations commonly known as TCA plot. Figs. 2
and 3 show the TCA plots of collision data. Four plots in Fig. 1 (1st and
2nd quadrants) and Fig. 2 (3rd and 4th quadrants) represent four
quadrants of a TCA plot for the purpose of clarity. Seven meaningful
clusters are identified in these four quadrants. The general interpreta-
tion indicates that the closeness of the attributes are associated with
co‐occurrence in the dataset. First two axes explained approximately
80% (axis 1: 56.6%, axis 2: 23.2%) variance of data.

Quadrant 1 (Fig. 2)
In cluster 1, “impact_Witness” is clustered with “injury_Hospita

lized,” “injury_Unknown,” and “weather_MostlyCloudy.” As men-
tioned in the data description, “impact_Witness” indicates that the peo-
ple who reported an event is a whiteness instead of the person
involved. It is reasonable to have this category clustered with
“injury_Hospitalized” and “injury_Unknown,” because the witness
can only report the cyclist who involved the crash is hospitalized if
the victim was taking way by an emergency vehicle. Otherwise, the
cyclist’s injury condition would be unknown to the person who
reported this crash. Cluster 2 indicates weekdays, moving vehicles,
and moderate wind speed between 4mph to 8 mph are associated with
bike collisions. Generally, weekdays are when most bike trips
occurred, and the majority of bike collisions involve moving vehicles.
These two statements can also be validated by the descriptive statistics
of this research in Table 2. Thus, the cluster supports the strong asso-
ciation between bike collision patterns with weekday trips, colliding
with moving vehicles, and windy weather.

Quadrant 2 (Fig. 2)
Cluster 3 suggests twelve categories associating with the bike colli-

sion. These categories are the movement types of vehicles collided
5

with the bike, windy weather, seasonality, lighting conditions, trip
purpose, injury severity, and psychological impact on the involved
cyclists. The movements of the vehicles which crashed with the bikes
in this cluster are turning right, going straight (head‐on collision) and
passing by (sideswipe). These types almost cover all possible move-
ment types of a vehicle, which demonstrates that, with other cate-
gories in the cluster, the cyclist could potentially collide with the
vehicle of any movement type. During poor lighting conditions, com-
mute trips – during dusk or dawn and inclement weather – wind speed
greater than 8 mph are highly associated with bike crashes. Interest-
ingly, the cluster also associates with minor or no injuries. This might
be explained by the extra caution taken by cyclists during inclement
weather and lighting conditions. However, the collision during this
severe weather and poor lighting conditions posed a strong influence
on cyclists psychologically because the cluster shows the association
between the crashes during these conditions and the impact afterward,
which is “stopped biking”. Note that, the “stopped biking” indicates
that the crashes have posed significant psychology impacts on the
cyclists. It does not necessarily means the cyclists will stop biking for-
ever, they may resume biking in the future.

Quadrant 3 (Fig. 3)
Cluster 4 is one of two clusters identified in quadrant 3. It also clus-

ters a wide range of categories. There are three findings in this cluster.
First, the glare effect is associated with the bike crash. The glare effect
also co‐exists with dry pavement conditions. Second, the cluster also
shows that recreational cyclists are often frequent/regular cyclists,
who often wear helmet and age from 19 to 50. This does not suggest
that older cyclists do not exist in this category. Cyclists report the data
voluntarily through websites and phone applications. The chance of
having these elder cyclists reporting events on the website or through
applications is relatively less. Third, this cluster also finds the colli-
sions of these recreational trips of frequent cyclists had limited impacts
on their attitude towards cycling. Cluster 5 indicates fall‐off collision
often occurs on the wet or loose sand/dirt pavement and usually asso-
ciates with cyclists with age over 50 years old.

Quadrant 4 (Fig. 3)
This quadrant has two clusters: Cluster 6 and 7. Cluster 6 again

states the possible impacts of crashes could be bike less or bike with
more caution when the crashes happened during the day and non‐
windy weather. This might say the crash would affect cyclists more
if the crash occurred in unexpected conditions with good lighting
and non‐windy weather. Cluster 7 associates the collision with the
vehicle from an angle with relatively more severe injuries, requiring
emergency visits or visiting family doctors. This finding echoes with
the results in research conducted by Fischer et al. (2020), which found
that collisions involving vehicle angles are more likely to cause severe
injury (requiring emergency visits or family doctor). Because when
vehicles are turning, cyclists are more likely to collide with a vehicle
angle, these two findings are consistent. Meanwhile, the relatively
more severe collision such as these requiring emergency visits often
encourages cyclists to bike less and bike with more cautions.

Information from each collision (row‐level analysis) can be used to
develop clusters. This analysis helps understanding the subgroup effect
in data. The row level cluster analysis helps to identify the association
of the clusters with some key variable categories or attributes. The log
odds ratio (LOR) measures of each cluster indicate the higher or lower
odds of the categories in clusters (see Table 3). For the collision data-
set, 13 clusters were developed based on the location of the x‐axis
measures of the row related data points on a two‐dimensional plot
(see Fig. 4). For example, ‘Clus01’ has two solid circles with the same
x‐axis and different y‐axis. The size of the circle indicates the sample
size of each location.

The log odds ratio (LOR) for “Clus01” near miss incidents with
more cautious bicyclists can be calculated
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Fig. 2. TCA Plots of Collision Data (1st and 2nd Quadrants).
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as:LORðMoreCautiousjOthersÞ ¼ ln 4=2
48=70

� �
¼ 1:07. The interpretation of

LOR can be explained as follows:

• LOR = 0, then the proportion of ‘More Cautious’ bicyclists in clus-
ter s equals the proportion of ‘Others’ in the sample.

• LOR > 0, then the proportion of ‘More Cautious’ bicyclists in clus-
ter s is greater than the proportion of females in the sample. That is,
the cluster s is positively associated with ‘More Cautious’ bicyclists,
and negatively associated with ‘Others’.

• LOR < 0, then the proportion of ‘Others’ in cluster s is larger than
the proportion of ‘More Cautious’ bicyclists in the sample. That is,
the cluster s is positively associated with ‘Others’, and negatively
associated with ‘More Cautious’ bicyclists.

To determine the risker groups, three major bicyclist related vari-
ables are considered for analysis. These variables are impact of the
incident, injury condition, and weather condition. Log odds ratio
6

(LOR) for “Clus02” collisions with more cautious bicyclists can be cal-

culated as:LORðMoreCautiousjOthersÞ ¼ ln 7=2
71=37

� �
¼ 0:601. It indicates

that for cluster “Clus02,” the proportion of cautious cyclists is larger
than the proportion of cyclists with other options. For three clusters
(Clus08, Clus10, Clus13), the first two (impact and injury type) LOR
measures are positive. It indicates that these clusters are positively
associated with bicyclists who were more likely to be involved in an
injury or hospitalization‐related collisions and would express that they
would be more cautious and careful towards bicycling in the future.
Out of 13 clusters, six clusters show positive LOR values for bicyclists
who were more likely to be cautious in bicycling in the future.
3.2. Results of near miss data

Figs. 5 and 6 illustrate the TCA plots for near miss data computa-
tion. Seven clusters are identified in the four quadrants. First two axes
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Fig. 3. TCA Plots of Collision Data (3rd and 4th Quadrants).
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explained approximately 65% (axis 1: 36.1%, axis 2: 28.5%) variance
of data.
Quadrant 1 (Fig. 5)
Cluster 8 shows the near miss events that are associated with a

head‐on vehicle, glare effect, drizzle weather, trips with the purpose
of social reasons, and being more careful later. Glare effects and drizzle
weather could create an uncomfortable biking environment for the
cyclist and encourages the cyclist to be more careful with the sur-
roundings, especially the head on vehicles. However, a near miss event
with a head‐on vehicle could have a considerable amount of impact on
the cyclist, like causing the cyclists to be more careful in the future.
This is likely because accidents involved with head‐on vehicles usually
leave a significant psychological shadow on cyclists.
7

Quadrant 2 (Fig. 5)
There are two clusters in this quadrant. Cluster 9 indicates thatmany

near miss events with fixed objects occur during commute trips in poor
lighting conditions. These trips often occur with female cyclists that are
not wearing helmets. This may suggest that many cyclists of near miss
fixed objects events are non‐frequent cyclists who have relatively fewer
experiences of biking in poor lighting conditions. Cluster 10 shows that
many sideswipe related near miss events occur on weekdays while the
cyclists are turning right. Biking during clear weather, the drivers and
cyclists can easily detect each other’s position. Especially during the
weekday commuting time, both sides move with more caution.
Quadrant 3 (Fig. 6)
Cluster 11 depicts a decent biking environment: flat terrain, dry

pavement, and the cyclists heading straight. The near miss event under
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Clus13 Clus02 

Fig. 4. Row based clusters for collision data.

Table 3
Log Odds Ratio Measures for three key variables (collision data).

Row Clusters Impact Injury Condition Weather

More Cautious Others LOR Injury related No Injury LOR Clear Inclement LOR

Clus01 4 4 −0.652 0 5 – 8 0 –

Clus02 7 2 0.601 5 4 −0.388 6 3 −0.455
Clus03 5 6 −0.834 3 8 −1.592 10 1 1.154
Clus04 4 1 0.735 3 2 −0.205 2 3 −1.554
Clus05 2 2 −0.652 0 4 – 4 0 –

Clus06 4 1 0.735 2 3 −1.016 5 0 –

Clus07 1 1 −0.652 1 1 −0.611 0 2 –

Clus08 6 1 1.14 5 2 0.305 5 2 −0.232
Clus09 5 3 −0.141 7 1 1.335 7 1 0.797
Clus10 6 1 1.14 6 1 1.181 5 2 −0.232
Clus11 9 5 −0.064 11 3 0.688 10 4 −0.232
Clus12 14 8 −0.092 19 3 1.235 14 8 −0.589
Clus13 4 2 0.041 5 1 0.999 6 0 –

Grand Total 71 37 70 38 82 26
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this decent biking condition for the frequent/regular male cyclists
could pose a relatively strong impact on them, including biking less
and being more careful when biking in the future.
Quadrant 4 (Fig. 6)
Three clusters are found in quadrant 4. Cluster 12 shows the asso-

ciation between near miss events and nonregular cyclists’ recreational
trips on weekends during windy weather. It is expected that most
recreational trips happen on weekends, including Friday. Cluster 13
indicates that some near miss events also occur with cyclists greater
than 50 years old, turning right on wet pavement. Turning on the
wet pavement could be a combination that triggers many near miss
events. In cluster 14, another combination that may cause near miss
events are light rain, loose sand or dirt pavement, and a non‐flat ter-
rain. The combination of these contributing factors could cause not
only near miss events, but also collision events.

Information from each near miss event (row‐level analysis) can be
used to develop clusters. For the near miss event dataset, 13 clusters
were developed based on the location of the x‐axis measures of the
row related data points on a two‐dimensional plot (see Fig. 7).

This indicates that for cluster “Clus01,” the proportion of cautious
cyclists is larger than the proportion of cyclists with other options (see
Table 4). For “Clus13,” the first two LOR measures (impact and injury
8

type) are positive. This indicates that these clusters are positively asso-
ciated with bicyclists who were more likely to be involved in injury or
hospitalization related collisions and would express that they would be
more cautious and careful when bicycling in the future. Out of 13 clus-
ters, six clusters show positive LOR values for bicyclists who were asso-
ciated with near miss events and were more likely to be cautious when
bicycling in the future. “Clus02” associates near miss incidents in
unpleasant weather with a large negative LOR compared to others,
while the other clusters contain incidents that mostly occurred in clear
weather conditions.

3.4. Key findings

Several apparent relationships are found in this study. For collision
events, the main findings of the dataset include:

• Inclement weather environments and poor pavement conditions
could increase the probability of collisions.

• Injuries from collision events that occurred during commute trips
under poor lighting conditions are often not severe because com-
muters were likely to be more cautious in poor lighting conditions,
which generally prevented them from getting injured. However,
these crashes could have a relatively strong impact on cyclists.
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Fig. 5. TCA Plots of Near miss Data (1st and 2nd Quadrants).
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For example, some of them reported stopped biking afterward.
Lighting on streets and bike‐friendly road design could reduce
these events.

• Riders of recreational trips are mostly regular cyclists, who tend to
have a helmet on. Meanwhile, the collisions that occur during these
recreational trips often have less impact on cyclists. A possible
explanation could be that regular cyclists are often aware of the
risks of riding on the roads. Their skills and experiences could help
them avoid or mitigate the magnitude of the collision, so the
crashes have a lesser impact on them.

• Fall‐off collisions are often related to cyclists more than
50 years old as well as wet or loose sand/dirt pavement. Safe
cycling training and safety education can be helpful in reduc-
ing these events.
9

• Not surprisingly, the results show that cyclists who have been
involved in severe crashes tend to be more careful and cycle less
later.

For near miss events, the main findings are:

• Near miss events often occur during dawn and dusk when inexpe-
rienced cyclists are commuting, often biking without wearing a
helmet.

• Near miss events with fixed objects often occur during commute
trips under poor lighting conditions. The cyclists in these events
were more likely to be female and nonregular cyclists. Lighting
on streets and bicycle‐friendly road design could reduce these
events.



Quadrant 3 

Quadrant 4 

Cluster 13 

Cluster 12 

Cluster 11 

Cluster 14 

Fig. 6. TCA Plots of Near miss Data (3rd and 4th Quadrants).
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• Near miss events are also likely to occur among cyclists older than
50 when the pavement was wet. A similar pattern is also found for
collision events where wet pavement is also clustered with cyclists
older than 50.

• Near miss events could also occur during recreational trips with
nonregular cyclists during inclement weather conditions.

• Both collision and near miss events are less likely to occur in clear
weather conditions.

The odds ratios show the differences of the clusters that are associ-
ated with collision or near miss events in three variables: impact of the
incident, injury condition, and weather condition. When considering
the variables of impact and injury for collision events, the odds ratio
indicates that cyclists who have experienced injury tend to be more
cautious when cycling in the future, which is consistent with the
10
results from TCA plots. The odds ratio also shows that near miss events
could encourage the cyclist to be more cautious while cycling.
3.5. Potential countermeasures

Based on the findings, several important countermeasures can be
considered in preventing bicycle involved crash and near‐crash events
in the future. Under inclement weather condition, poor pavement con-
ditions are more likely to be associated with traffic collisions. More
investments on pavement condition can improve safety. For commute
trip, poor light condition can likely to be associated with bicycle
related collision events. Roadways with high number of commuters
can be considered in the priority list of roadways having proper light-
ing condition at night. Fall‐off collisions are often related to cyclists
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Fig. 7. Row based Clusters for Near miss Data.

Table 4
Log Odds Ratio Measures for Three Key Variables (Near miss Data).

Row Clusters Impact Injury Condition Weather

More Cautious Others LOR Injury related No Injury LOR Clear Inclement LOR

Clus01 4 2 1.07 0 6 5 1 0.663
Clus02 3 11 −0.922 0 14 5 9 −1.53
Clus03 5 8 −0.093 0 13 10 3 0.258
Clus04 10 9 0.483 0 19 14 5 0.083
Clus05 8 6 0.665 0 14 12 2 0.846
Clus06 2 4 −0.316 0 6 4 2 −0.25
Clus07 1 6 −1.414 0 7 4 3 −0.66
Clus08 4 3 0.665 0 7 5 2 −0.03
Clus09 2 6 −0.721 1 7 2.115 6 2 0.152
Clus10 1 3 −0.721 0 4 3 1 0.152
Clus11 4 4 0.377 0 8 7 1 1
Clus12 1 4 −1.009 0 5 4 1 0.44
Clus13 3 4 0.09 1 6 2.269 6 1 0.846
Grand Total 48 70 2 116 85 33
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more than 50 years old. Safety education and training in proper gear
and helmets can improve safety awareness among the elder cyclists.

Near miss events with fixed objects often occur during commute
trips under poor lighting conditions. Improving the lighting condition
and designing more bike friendly infrastructures can mitigate this
problem. Near miss and collision events are often associated with
wet pavement condition among cyclists over 50 years old. For elder
citizens, it is necessary to recommend them to avoid cycling during
wet surface condition.
4. Conclusions

Conventional bicycle‐related collision datasets normally do not
contain near miss events, which could be an important resource for
researchers to understand these events and further recommend suit-
able countermeasures to protect cyclists. This study explores a unique
dataset containing bicycle‐related collisions and near miss events. The
information about the impact of the collision or near miss events on
cyclists could help researchers gain a profound understanding of
cyclists from a psychological perspective. This study explores this
unique dataset using TCA, which reveals the insightful correlations
among categorical variable attributes through dimension reduction.
The dataset is divided into two groups: collision and near miss events;
11
and then fourteen meaningful clusters are identified from the two
groups.

The contention of this study is that identification associations and
patterns of key contributing factors can divulge realistic indication
on gaps in the suite of suitable countermeasures that may contribute
to bicycle crash or near miss event reduction. This study demonstrated
how intuitive insights could be revealed using TCA by using a dataset
collected from BikeMaps.org. This dataset is unique in comparison to
conventional crash databases. Impact of future cycling behavior, hel-
met usage, and near crash events are some of the few features of this
database. The TCA analyses suggest that both bike collision events and
near miss events are more likely to occur during weekdays and when
the bicyclist is traveling for commute purposes. Inclement weather,
very windy, poor lighting conditions, wet ground, loose sand or dirt
pavement are all factors that increase the chance of collision and near
miss events. The study indicates that collision or near miss events have
a stronger impact on cyclists if the events occurred when the cyclist
was paying extra attention while cycling. These cyclists tend to cycle
less and more carefully after these events. Interestingly, the results find
that regular cyclists are not psychologically affected by collisions that
occur during recreational trips.

As data‐driven research, this analysis reveals several important
findings. However, there are still some limitations to the research.
First, the sample size of the available data is limited. It is reasonable



S. Das et al. Transportation Research Interdisciplinary Perspectives 10 (2021) 100360
to believe that many bicycle‐related collisions are not reported on this
website. The research purpose would be better served if the data were
richer. Additionally, comparison with the real crash data can be
insightful. However, the findings of the existing data are still reason-
able and insightful due to the new information (e.g, near‐crash, effect
on future biking) that are associated with this data. Second, since the
events were voluntarily reported, there are many missing values in the
dataset. The results could be more significant if all of the information
were filled by the reporters. Additionally, some of the geometric data
can be manually added. As the study mainly focused on the usefulness
of crowdsourced data, additional data were not included in the analy-
sis. Third, this research only includes a dataset from the Arizona area,
mostly in Phoenix. It is possible that the patterns found in this research
may vary from patterns in other regions of the U.S. Future studies
could perform more comprehensive data collection across different
areas.
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